Azure Virtual WAN ARM – The Resources

In this post, I will explain the types of resources used in Azure Virtual WAN and the nature of their relationships.

Note, I have not included any content on the recently announced preview of third-party NVAs. I have not seen any materials on this yet to base such a post on and, being honest, I don’t have any use-cases for third-party NVAs.

As you can see – there are quite a few resources involved … and some that you won’t see listed at all because of the “appliance-like” nature of the deployment. I have not included any detail on spokes or “branch offices”, which would require further resources. The below diagram is enough to get a hub operational and connected to on-premises locations and spoke virtual networks.

The Virtual WAN – Microsoft.Network/virtualWans

You need at least one Virtual WAN to be deployed. This is what the hub will connect to, and you can connect many hubs to a common Virtual WAN to get automated any-to-any connectivity across the Microsoft physical WAN.

Surprisingly, the resource is deployed to an Azure region and not as a global resource, such as other global resources such as Traffic Manager or Azure DNS.

The Virtual Hub – Microsoft.Network/virtualHubs

Also known as the hub, the Virtual Hub is deployed once, and once only, per Azure region where you need a hub. This hub replaces the old hub virtual network (plus gateway(s), plus firewall, plus route tables) deployment you might be used to. The hub is deployed as a hidden resource, managed through the Virtual WAN in the Azure Portal or via scripting/ARM.

The hub is associated with the Virtual WAN through a virtualWAN property that references the resource ID of the virtualWans resource.

In a previous post, I referred to a chicken & egg scenario with the virtualHubs resource. The hub has properties that point to the resource IDs of each deployed gateway:

  • vpnGateway: For site-to-site VPN.
  • expressRouteGateway: For ExpressRoute circuit connectivity.
  • p2sVpnGateway: For end-user/device tunnels.

If you choose to deploy a “Secured Virtual Hub” there will also be a property called azureFirewall that will point to the resource ID of an Azure Firewall with the AZFW_Hub SKU.

Note, the restriction of 1 hub per Azure region does introduce a bottleneck. Under the covers of the platform, there is actually a virtual network. The only clue to this network will be in the peering properties of your spoke virtual networks. A single virtual network can have, today, a maximum of 500 spokes. So that means you will have a maximum of 500 spokes per Azure region.

Routing Tables – Microsoft.Network/virtualHubs/hubRouteTables & Microsoft.Network/virtualHubs/routeTables

These are resources that are used in custom routing, a recently announced as GA feature that won’t be live until August 3rd, according to the Azure Portal. The resource control the flows of traffic in your hub and spoke architecture. They are child-resources of the virtualHubs resource so no references of hub resource IDs are required.

Azure Firewall – Microsoft.Network/azureFirewalls

This is an optional resource that is deployed when you want a “Secured Virtual Hub”. Today, this is the only way to put a firewall into the hub, although a new preview program should make it possible for third-parties to join the hub. Alternatively, you can use custom routing to force north-south and east-west traffic through an NVA that is running in a spoke, although that will double peering costs.

The Azure Firewall is deployed with the AZFW_Hub SKU. The firewall is not a hidden resource. To manage the firewall, you must use an Azure Firewall Policy (aka Azure Firewall Manager). The firewall has a property called firewallPolicy that points to the resource ID of a firewallPolicies resource.

Azure Firewall Policy – Microsoft.Network/firewallPolicies

This is a resource that allows you to manage an Azure Firewall, in this case, an AZFW_Hub SKU of Azure Firewall. Although not shown here, you can deploy a parent/child configuration of policies to manage firewall configurations and rules in a global/local way.

VPN Gateway – Microsoft.Network/vpnGateways

This is one of 3 ways (one, two or all three at once) that you can connect on-premises (branch) sites to the hub and your Azure deployment(s). This gateway provides you with site-to-site connectivity using VPN. The VPN Gateway uses a property called virtualHub to point at the resource ID of the associated hub or virtualHubs resource. This is a hidden resource.

Note that the virtualHubs resource must also point at the resource ID of the VPN gateway resource ID using a property called vpnGateway.

ExpressRoute Gateway – Microsoft.Network/expressRouteGateways

This is one of 3 ways (one, two or all three at once) that you can connect on-premises (branch) sites to the hub and your Azure deployment(s). This gateway provides you with site-to-site connectivity using ExpressRoute. The ExpressRoute Gateway uses a property called virtualHub to point at the resource ID of the associated hub or virtualHubs resource. This is a hidden resource.

Note that the virtualHubs resource must also point at the resource ID of the ExpressRoute gateway resource ID using a property called p2sGateway.

Point-to-Site Gateway – Microsoft.Network/p2sVpnGateways

This is one of 3 ways (one, two or all three at once) that you can connect on-premises (branch) sites to the hub and your Azure deployment(s). This gateway provides users/devices with connectivity using VPN tunnels. The Point-to-Site Gateway uses a property called virtualHub to point at the resource ID of the associated hub or virtualHubs resource. This is a hidden resource.

The Point-to-Site Gateway inherits a VPN configuration from a VPN configuration resource based on Microsoft.Network/vpnServerConfigurations, referring to the configuration resource by its resource ID using a property called vpnServerConfiguration.

Note that the virtualHubs resource must also point at the resource ID of the Point-to-Site gateway resource ID using a property called p2sVpnGateway.

VPN Server Configuration – Microsoft.Network/vpnServerConfigurations

This configuration for Point-to-Site VPN gateways can be seen in the Azure WAN and is intended as a shared configuration that is reusable with more than one Point-to-Site VPN Gateway. To be honest, I can see myself using it as a per-region configuration because of some values like DNS servers and RADIUS servers that will probably be placed per-region for performance and resilience reasons. This is a hidden resource.

The following resources were added on 22nd July 2020:

VPN Sites – Microsoft.Network/vpnSites

This resource has a similar purpose to a Local Network Gateway for site-to-site VPN connections; it describes the on-premises location, AKA “branch office”.  A VPN site can be associated with one or many hubs, so it is actually connected to the Virtual WAN resource ID using a property called virtualWan. This is a hidden resource.

An array property called vpnSiteLinks describes possible connections to on-premises firewall devices.

VPN Connections – Microsoft.Network/vpnGateways/vpnConnections

A VPN Connections resource associates a VPN Gateway with the on-premises location that is described by an associated VPN Site. The vpnConnections resource is a child resource of vpnGateways, so there is no actual resource; the vpnConnections resource takes its name from the parent VPN Gateway, and the resource ID is an extension of the parent VPN Gateway resource ID.

By necessity, there is some complexity with this resource type. The remoteVpnSite property links the vpnConnections resource with the resource ID of a VPN Site resource. An array property, called vpnSiteLinkConnections, is used to connect the gateway to the on-premises location using 1 or 2 connections, each linking from vpnSiteLinkConnections to the resource/property ID of 1 or 2 vpnSiteLinks properties in the VPN Site. With one site link connection, you have a single VPN tunnel to the on-premises location. With 2 link connections, the VPN Gateway will take advantage of its active/active configuration to set up resilient tunnels to the on-premises location.

Virtual Network Connections – Microsoft.Network/virtualHubs/hubVirtualNetworkConnections

The purpose of a hub is to share resources with spoke virtual networks. In the case of the Virtual Hub, those resources are gateways, and maybe a firewall in the case of Secured Virtual Hub. As with a normal VNet-based hub & spoke, VNet peering is used. However, the way that VNet peering is used changes with the Virtual Hub; the deployment is done using the hub/VirtualNetworkConnections child resource, whose parent is the Virtual Hub. Therefore, the name and resource ID are based on the name and resource ID of the Virtual Hub resource.

The deployment is rather simple; you create a Virtual Network Connection in the hub specifying the resource ID of the spoke virtual network, using a property called remoteVirtualNetwork. The underlying resource provider will initiate both sides of the peering connection on your behalf – there is no deployment required in the spoke virtual network resource. The Virtual Network Connection will reference the Hub Route Tables in the hub to configure route association and propagation.

More Resources

There are more resources that I’ve yet to document, including:

Connecting Azure Hub-And-Spoke Architectures Together

In this post, I will explain how you can connect multiple Azure hub-and-spoke (virtual data centre) deployments together using Azure networking, even across different Azure regions.

There is a lot to know here so here is some recommended reading that I previously published:

If you are using Azure Virtual WAN Hub then some stuff will be different and that scenario is not covered fully here – Azure Virtual WAN Hub has a preview (today) feature for Any-to-Any routing.

The Scenario

In this case, there are two hub-and-spoke deployments:

  • Blue: Multiple virtual networks covered by the CIDR of 10.1.0.0/16
  • Green: Another set of multiple virtual networks covered by the CIDR of 10.2.0.0/16

I’m being strategic with the addressing of each hub-and-spoke deployment, ensuring that a single CIDR will include the hub and all spokes of a single deployment – this will come in handy when we look at User-Defined Routes.

Either of these hub-and-spoke deployments could be in the same region or even in different Azure regions. It is desired that if:

  • Any spoke wishes to talk to another spoke it will route through the local firewall in the local hub.
  • All traffic coming into a spoke from an outside source, such as the other hub-and-spoke, must route through the local firewall in the local hub.

That would mean that Spoke 1 must route through Hub 1 and then Hub 2 to talk to Spoke 4. The firewall can be a third-party appliance or the Azure Firewall.

Core Routing

Each subnet in each spoke needs a route to the outside world (0.0.0.0/0) via the local firewall. For example:

  • The Blue firewall backend/private IP address is 10.1.0.132
  • A Route Table for each subnet is created in the Blue deployment and has a route to 0.0.0.0/0 via a virtual appliance with an IP address of 10.1.0.132
  • The Greenfirewall backend/private IP address is 10.2.0.132
  • A Route Table for each subnet is created in the Green deployment and has a route to 0.0.0.0/0 via a virtual appliance with an IP address of 10.2.0.132

Note: Some network-connected PaaS services, e.g. API Management or SQL Managed Instance, require additional routes to the “control plane” that will bypass the local firewall.

Site-to-Site VPN

In this scenario, the organisation is connecting on-premises networks to 1 or more of the hub-and-spoke deployments with a site-to-site VPN connection. That connection goes to the hub of Blue and to Green hubs.

To connect Blue and Green you will need to configure VNet Peering, which can work inside a region or across regions (using Microsoft’s low latency WAN, the second-largest private WAN on the planet). Each end of peering needs the following settings (the names of the settings change so I’m not checking their exact naming):

  • Enabled: Yes
  • Allow Transit: Yes
  • Use Remote Gateway: No
  • Allow Gateway Sharing: No

Let’s go back and do some routing theory!

That peering connection will add a hidden Default (“system”) route to each subnet in the hub subnets:

  • Blue hub subnets: A route to 10.2.0.0/24
  • Green hub subnets: A route to 10.1.0.0/24

Now imagine you are a packet in Spoke 1 trying to get to Spoke 4. You’re sent to the firewall in Blue Hub 1. The firewall lets the traffic out (if a rule allows it) and now the packet sits in the egress/frontend/firewall subnet and is trying to find a route to 10.2.2.0/24. The peering-created Default route covers 10.2.0.0/24 but not the subnet for Spoke 4. So that means the default route to 0.0.0.0/0 (Internet) will be used and the packet is lost.

To fix this you will need to add a Route Table to the egress/frontend/firewall subnet in each hub:

  • Blue firewall subnet Route Table: 10.2.0.0/16 via virtual appliance 10.2.0.132
  • Red firewall subnet Route Table: 10.1.0.0/16 via virtual appliance 10.1.0.132

Thanks to my clever addressing of each hub-and-spoke, a single route will cover all packets leaving Blue and trying to get to any spoke in Red and vice-versa.

ExpressRoute

Now the customer has decided to use ExpressRoute to connect to Azure – Sweet! But guess what – you don’t need 1 expensive circuit to each hub-and-spoke.

You can share a single circuit across multiple ExpressRoute gateways:

  • ExpressRoute Standard: Up to 10 simultaneous connections to Virtual Network Gateways in 1+ regions in the same geopolitical region.
  • ExpressRoute Premium: Up to 100 simultaneous connections to Virtual Network Gateways in 1+ regions in any geopolitical region.

FYI, ExpressRoute connections to the Azure Virtual WAN Hub must be of the Premium SKU.

ExpressRoute is powered by BGP. All the on-premises routes that are advertised propagate through the ISP to the Microsoft edge router (“meet-me”) in the edge data centre. For example, if I want an ExpressRoute circuit to Azure West Europe (Middenmeer, Netherlands – not Amsterdam) I will probably (not always) get a circuit to the POP or edge data centre in Amsterdam. That gets me a physical low-latency connection onto the Microsoft WAN – and my BGP routes get to the meet-me router in Amsterdam. Now I can route to locations on that WAN. If I connect a VNet Gateway to that circuit to Blue in Azure West Europe, then my BGP routes will propagate from the meet-me router to the GatewaySubnet in the Blue hub, and then on to my firewall subnet.

BGP propagation is disabled in the spoke Route Tables to ensure all outbound flows go through the local firewall.

But that is not the extent of things! The hub-and-spoke peering connections allow Gateway Sharing from the hub and Use Remote Gateway from the spoke. With that configuration, BGP routes to the spoke get propagated to the GatewaySubnet in the hub, then to the meet-me router, through the ISP and then to the on-premises network. This is what our solution is based on.

Let’s imagine that the Green deployment is in North Europe (Dublin, Ireland). I could get a second ExpressRoute connection but:

  • That will add cost
  • Not give me the clever solution that I want – but I could work around that with ExpressRoute Global Reach

I’m going to keep this simple – by the way, if I wanted Green to be in a different geopolitical region such as East US 2 then I could use ExpressRoute Premium to make this work.

In the Green hub, the Virtual Network Gateway will connect to the existing ExpressRoute circuit – no more money to the ISP! That means Green will connect to the same meet-me router as Blue. The on-premises routes will get into Green the exact same way as with Blue. And the routes to the Green spokes will also propagate down to on-premises via the meet-me router. That meet-me router knows all about the subnets in Blue and Green. And guess what BGP routers do? They propagate – so, the routes to all of the Blue subnets propagate to Green and vice-versa with the next hop (after the Virtual Network Gateway) being the meet-me router. There are no Route Tables or peering required in the hubs – it just works!

Now the path from Blue Spoke 1 to Green Spoke 4 is Blue Hub Firewall, Blue Virtual Network Gateway, <the Microsoft WAN>, Microsoft (meet-me) Router, <the Microsoft WAN>, Green Virtual Network Gateway, Green Hub Firewall, Green Spoke 4.

There are ways to make this scenario more interesting. Let’s say I have an office in London and I want to use Microsoft Azure. Some stuff will reside in UK South for compliance or performance reasons. But UK South is not a “hero region” as Microsoft calls them. There might be more advanced features that I want to use that are only in West Europe. I could use two ExpressRoute circuits, one to UK South and one to West Europe. Or I could set up a single circuit to London to get me onto the Microsoft WAN and connected this circuit to both of my deployments in UK South and West Europe. I have a quicker route going Office > ISP > London edge data center > Azure West Europe than from Office > ISP > Amsterdam edge data center > Azure West Europe because I have reduced the latency between me and West Europe by reducing the length of the ISP circuit and using the more-direct Microsoft WAN. Just like with Azure Front Door, you want to get onto the Microsoft WAN as quickly as possible and let it get you to your destination as quickly as possible.