Creating an Azure Service for Slow Moving Organisations

In this post, I will explain how you can use Azure’s Public IP Prefix feature to pre-create public IP addresses to access Azure services when you are working big/government organisations that can take weeks to configure a VPN tunnel, outbound firewall rule, and so on.

In this scenario, I need a predictable IP address so that means I must use the Standard SKU address tier.

The Problem

It normally only takes a few minutes to create a firewall rule, a VPN tunnel, etc in an on-premises network. But sometimes it seems to take forever! I’ve been in that situation – you’ve set up an environment for the customer to work with, but their on-premises networking team(s) are slow to do anything. And you only wish that you had given them all the details that they needed earlier in the project so their configuration work would end when your weeks of engineering was wrapping up.

But you won’t know the public IP address until you create it. And that is normally only created when you create the virtual network gateway, Azure Firewall, Application Firewall, etc. But what if you had a pool of Azure public IP addresses that were pre-reserved and ready to share with the network team. Maybe they could be used to make early requests for VPN tunnels, firewall rules, and so on? Luckily, we can do that!

Public IP Prefix

An Azure Public IP Prefix is a set of reserved public IP addresses (PIPs). You can create an IP Prefix of a certain size, from /31 (2 addresses) to /24 (256 addresses), in a certain region. The pool of addresses is a contiguous block of predictable addresses. And from that pool, you can create public IP addresses for your Azure resources.

In my example, I want a Standard tier IP address and this requires a Standard tier Public IP Prefix. Unfortunately, the Azure Portal doesn’t allow for this with Public IP Prefix, so we need some PowerShell. First, we’ll define some reused variables:

$rgName = "test"
$region = "westeurope"
$ipPrefixName = "test-ipfx"

Now we will create the Publix IP Prefix. Note that the length refers to the subnet mask length. In my example that’s a /30 resulting in a prefix with 4 reserved public IP addresses:

$ipPrefix = New-AzPublicIpPrefix -Name $ipPrefixName -ResourceGroupName $rgName -PrefixLength 30 -Sku Standard -Location $region

You’ll note above that I used Standard in the command. This creates a pool of static Standard tier public IP addresses. I could have dropped the Standard, and that would have created a pool of static Basic tier IP addresses – you can use the Azure Portal to deploy Basic tier Public IP Prefix and public IP addresses from that prefix. The decision to use Standard tier or Basic tier affects what resources I can deploy with the addresses:

  • Standard: Azure Firewall, zone-redundant virtual network gateways, v2 application gateways/firewalls, standard tier load balancers, etc.
  • Basic static: Basic tier load balancers, v1 application gateways/firewalls, etc.

Note that the non-zone redundant virtual network gateways cannot use static public IP addresses and therefore cannot use Public IP Prefix.

Creating a Public IP Address

Let’s say that I have a project coming up where I need to deploy an Application Firewall and I know the on-premises network team will take weeks to allow outbound access to my new web service. Instead of waiting until I build the application, I can reserve the IP address now, tell the on-premises firewall team to allow it, and then work on my project. Hopefully, by the time I have the site up and running and presented to the Internet by my Application Firewall, they will have created the outbound firewall rule from the company network.

Browse to the Public IP Prefix and make sure that it is in the same region as the new virtual network and virtual network gateway. Open the prefix and check Allocated IP Addresses in the Overview. Make sure that there is free capacity in the reserved block.

Now I can continue to use my variables from above and create a new public IP address from one of the reserved addresses in the Public IP Prefix:

New-AzPublicIpAddress -Name "test-vpn-pip" -ResourceGroupName $rgName -AllocationMethod Static -DomainNameLabel "test-vpn" -Location $region -PublicIpPrefix $ipPrefix -Sku Standard

Use the Public IP Address

I now have everything I need to pass onto the on-premises network team in my request. In my example, I am going to create a v2 Application Firewall.

Once I configure the WAF, the on-premises firewall will (hopefully) already have the rule to allow outbound connections to my pre-reserved IP address and, therefore, my new web service.

Azure Availability Zones in the Real World

I will discuss Azure’s availability zones feature in this post, sharing what they can offer for you and some of the things to be aware of.

Uptime Versus SLA

Noobs to hosting and cloud focus on three magic letters: S, L, A or service level agreement. This is a contractual promise that something will be running for a certain percentage of time in the billing period or the hosting/cloud vendor will credit or compensate the customer.

You’ll hear phrases like “three nines”, or “four nines” to express the measure of uptime. The first is a 99.9% measure, and the second is a 99.99% measure. Either is quite a high level of uptime. Azure does have SLAs for all sorts of things. For example, a service deployed in a valid virtual machine availability set has a connectivity (uptime) SLA of 99.9%.

Why did I talk about noobs? Promises are easy to make. I once worked for a hosting company that offers a ridiculous 100% SLA for everything, including cheap-ass generic Pentium “servers” from eBay with single IDE disks. 100% is an unachievable target because … let’s be real here … things break. Even systems with redundant components have downtime. I prefer to see realistic SLAs and honest statements on what you must do to get that guarantee.

Azure gives us those sorts of SLAs. For virtual machines we have:

  • 5% for machines with just Premium SSD disks
  • 9% for services running in a valid availability set
  • 99% for services running in multiple availability zones

Ah… let’s talk about that last one!

Availability Sets

First, we must discuss availability sets and what they are before we move one step higher. An availability set is anti-affinity, a feature of vSphere and in Hyper-V Failover Clustering (PowerShell or SCVMM); this is a label on a virtual machine that instructs the compute cluster to spread the virtual machines across different parts of the cluster. In Azure, virtual machines in the same availability set are placed into different:

  • Update domains: Avoiding downtime caused by (rare) host reboots for updates.
  • Fault domains: Enable services to remain operational despite hardware/software failure in a single rack.

The above solution spreads your machines around a single compute (Hyper-V) cluster, in a single room, in a single building. That’s amazing for on-premises, but there can still be an issue. Last summer, a faulty humidity sensor brought down one such room and affected a “small subset” of customers. “Small subset” is OK, unless you are included and some mission critical system was down for several hours. At that point, SLAs are meaningless – a refund for the lost runtime cost of a pair of Linux VMs running network appliance software won’t compensate for thousands or millions of Euros of lost business!

Availability Zones

We can go one step further by instructing Azure to deploy virtual machines into different availability zones. A single region can be made up of different physical locations with independent power and networking. These locations might be close together, as is typically the case in North Europe or West Europe. Or they might be on the other side of a city from each other, as is the case in some in North America. There is a low level of latency between the buildings, but this is still higher than that of a LAN connection.

A region that supports availability zones is split into 4 zones. You see three zones (round robin between customers), labeled as 1, 2, and 3. You can deploy many services across availability zones – this is improving:

  • VNet: Is software-defined so can cross all zones in a single region.
  • Virtual machines: Can connect to the same subnet/address space but be in different zones. They are not in availability sets but Azure still maintains service uptime during host patching/reboots.
  • Public IP Addresses: Standard IP supports anycast and can be used to NAT/load balance across zones in a single region.

Other network resources can work with availability zones in one of two ways:

  • Zonal: Instances are deployed to a specific zone, giving optimal latency performance within that zone, but can connect to all zones in the region.
  • Zone Redundant: Instances are spread across the zone for an active/active configuration.

Examples of the above are:

  • The zone-aware VNet gateways for VPN/ExpressRoute
  • Standard load balancer
  • WAGv2 / WAFv2

Considerations

There are some things to consider when looking at availability zones.

  • Regions: The list of regions that supports availability zones is increasing slowly but it is far from complete. Some regions will not offer this highest level of availability.
  • Catchup: Not every service in Azure is aware of availability zones, but this is changing.

Let me give you two examples. The first is VM Boot Diagnostics, a service that I consider critical for seeing the console of the VM and getting serial console access without a network connection to the virtual machine. Boot Diagnostics uses an agent in the VM to write to a storage account. That storage account can be:

  • LRS: 3 replicas reside in a single compute cluster, in a single room, in a single building (availability zone).
  • GRS: LRS plus 3 asynchronous replicas in the paired region, that are not available for write unless Microsoft declares a total disaster for the primary region.

So, if I have a VM in zone 1 and a VM in zone 2, and both write to a storage account that happens to be in zone 1 (I have no control over the storage account location), and zone 1 goes down, there will be issues with the VM in zone 2. The solution would be to use ZRS GPv2 storage for Boot Diagnostics, however, the agent will not support this type of storage configuration. Gotcha!

Azure Advisor will also be a pain in the ass. Noobs are told to rely on Advisor (it is several questions in the new Azure infrastructure exams) for configuration and deployment advice. Advisor will see the above two VMs as being not highly available because they are not (and cannot) be in a common availability set, so you are advised to degrade their SLA by migrating them to a single zone for an availability set configuration – ignore that advice and be prepared to defend the decision from Azure noobs, such as management, auditors, and ill-informed consultants.

Opinion

Availability zones are important – I use them in an architecture pattern that I am working on with several customers. But you need to be aware of what they offer and how certain things do not understand them yet or do not support them yet.

 

Cannot Create a Basic Tier Virtual Network Gateway in Azure

There is a bug in the Azure Portal that prevents you from selecting a virtual network when you pick the Basic Tier of the virtual network gateway, and you are forced into selecting the more expensive VpnGw1. I’ll show you how to workaround this bug in this post.

Background

I recently ran a hands-on Azure class in London. Part of the class required deploying & configuring a VPN gateway in the West Europe region. I always use the Basic tier because:

  • It’s cheaper – $26.79 for Basic versus $141.36 for VpnGw1 per month
  • That’s what most (by a long shot) of my customers deploy in production because it meets their needs.

I’ve had a customer in Northern Ireland report the same problem in North Europe.

The process goes like this:

  1. You select VPN gateway type
  2. Select Route-Based
  3. Select Basic as the SKU
  4. Then you attempt to select the virtual network that you want to use – it already has a gateway subnet
  5. You cannot continue because the virtual network is greyed out

image

The error shown is:

The following issues must be fixed to use this virtual network: The VPN gateway cannot have a basic SKU in order for it to coexist with an existing ExpressRoute gateway.

In all cases so far, the subscriptions have been either brand new CSP/trial subscriptions with no previous resources, or my lab subscription where I’ve used a new virtual network to demonstrate this scenario – and I have never deployed ExpressRoute in any subscription.

Workaround

Credit where credit is due – some of my attendees last week figured out how to beat the UI bug.

  1. Close the Choose Virtual Network blade if it is open.
  2. Select the VpnGw1 tier gateway in the Create Virtual Network Gateway blade – don’t worry, you won’t be creating it if you don’t want to pay the price.
  3. Click Choose A Virtual Network
  4. Select your virtual network
  5. Change the SKU of the gateway back to Basic
  6. Finish the wizard

image

I know – it’s a daft UI bug, but the above workaround works.